The Economic Impact of Climate Change in Coastal Areas in Florida

Dr. Julie Harrington, Director Center for Economic Forecasting and Analysis

> Dr. Todd Walton, Director Beaches and Shores Research Center

Florida State University

FSU Center for Economic Forecasting and Analysis (CEFA)

 The Florida State University Center for Economic Forecasting and Analysis (CEFA) specializes in applying advanced, computer-based economic models and techniques to examine and help resolve pressing public policy issues across a spectrum of research areas.

Forecas

evelo

FSU Beaches and Shores Research Center

The Florida State University Beaches and Shores Research Center was created in 1982 to assist the State of Florida in establishing a recommended Coastal Construction Control Line for each of Florida's 24 coastal counties with sandy beaches. The Center actively seeks to understand how beaches can be better designed to protect upland property from coastal storms while protecting the native flora and fauna of this delicate ecosystem. Types of research include:

- Analytical shoreline modeling
- Bay/wetland response to tide
- Impacts due to natural or man-made construction
- Inlet stability
- Water level extreme and distributional analysis
 - Short-term storm surge forecasting
 - **Inlet modeling for improved storm surge estimates**

General Framework

Six County (Escambia, Duval, Dade, Wakulla, Dixie and Monroe - Demographics

 Sea Level Rise (SLR) – Eustatic Estimates (IPCC) and SLR Estimates and Methodology Performed by FSU Beaches and Shores Resources Center, Todd Walton for Years 2030, 2080.

Property at Risk – Examples and Adaptation Measures in Florida

 Cost Damage Assessment Model Based on Flood Insurance Studies, and Hurricane Damage Assessments for Two Years in 2006 Dollars
 Economic Impact – Yohe Model

Demographics Dade County

Total 6,297 <u>km²</u> (2,431 <u>mi²</u>) **Land 5,040** km² (1,946 mi²) Water 1,257 km²(485 mi²) 19.96%

Population Year 2000 2,253,362 Density 447/km²

Demographics Dixie County

Area

Total 2,237 km² (864 mi²)
Land 1,824 km² (704 mi²),
Water 413 km²(160 mi²) 18.49% **Population**

 Year 2000
 13827

 Density
 8/km²

Demographics Duval County

Area

Total 2,378 km² (918 mi²) Land2,004 km² (774 mi²) Water374 km² (145 mi²), 15.74%

Population Year 2000 778,879

Density 389/km²

Demographics Monroe County

Area Total 9,679 km² (3,737 mi²) Land 2,582 km² (996.9 sq mi) Water 7,097 km² (2,740 mi²), 73.32% Population Year 2000 79,589 Density 30.8/km²

Demographics Escambia County

Area

Total 2,268 km² (876 mi²) Land 1,715 km² (662 mi²) Water 552 km² (213 mi²), 24.35% Depulation Year 2000 294,410

Demographics Wakulla County

Area

Total 1,906 <u>km²</u> (736 <u>mi²</u>) Land 1571 km² (607 mi²) Water 334 km² (129 mi²), 17.54% Population

Year 2000 22,863

Density 15/km²

Global average sea level rise (1990 - 2100) Sea level rise (metres) for the six SRES Scenarios

Reasons for Data Based Approach

 Based on Global Models of Climate Change (physics uncertain... i.e. can't predict El Nino's)

 Need Relative Sea Level Rise (for local damage estimates)

Key West Tide Station

Fernandina Beach Tide Station

NOAA Water Level Recording Stations

Station Name Station Number Record

Fernandina, FL

8720030

1941-2005

Span

Key West, FL 8724580

1941-2005

St. Petersburg, FL 8726520

1947-2005

Cedar Key, FL 8727520

Pensacola, FL

8729840

1941-2005

1941-2005

Data Based Methods of Forecasting

THE OWNER WHEN THE OWNER OF

Noise in data

Missing observations

Filtering Approaches

Monthly Means

Low Pass

Band Pass

Singular Spectral Analysis (SSA)

Low Pass Filtering

Low Pass Filtering Forecast to 2080

SSA filtered series

12.3 1

Forecasting Approaches

Linear with Second Order Acceleration Term

Non-Linear

Autoregressive Series (Unstable)

Linear

 $y(time) = a + b\Box time + \varepsilon$

Linear with Second Order Term (for acceleration/deceleration of slr)

 $y(time) = a + b\Box time + c\Box time^2 + \varepsilon$

Non-Linear Exponential

 $y(t) = p_1 + p_2 \cdot e^{(p_3 \cdot t)} + error$

 $y(t) = p_1 + p_2 \cdot (1 + p_3 \cdot t + \frac{p_3 \cdot t^2}{2} + \dots hot) + error$

Forecast Relative Sea LevelRise from 2006 to 2080StationRelative SLR (meters)

Fernandina, FL

Key West, FL

St. Petersburg, FL

Cedar Key, FL

Pensacola, FL

0.31

 0.2^{4}

0.35

0.27

0.34

Forecast Relative Sea Level Rise from 2006 to 2080

Relative Sea Level Rise (in Meters) Station 1st Order 2nd Order Exponential Fernandina, FL 0.16 0.27 0.25 0.28 Key West, FL 0.15 0.31 St. Petersburg, FL 0.18 0.35 0.36 Cedar Key, FL 0.11 0.27 * ** Pensacola, FL 0.340.13

*parameter estimation convergence problems

SLR Estimation Conclusions

"Predictions are risky, especially when they're about the future." ---Yogi Berra

- Linear (straight line) Trend Forecasts do not allow for sea level acceleration.
- A small sea level rise acceleration is noted in the Florida data.
- Sea level rise trends using (straight line) linear trends underestimate the sea level rise to be realized (for Florida and the time span considered).
 - Sea level rise trends found using data are within the band of IPCC findings using global climate models.
 - The future ain't what it used to be." --- Yogi Berra

Property at Risk

How will your Coastal Property be Effected in the Year 2080?

According to the IPCC estimate of a 65cm scenario SLR, and with respect to the six counties, it appears that although a number of properties along the coast will be considered to not be inundated, it doesn't assure that these coastal properties are safe from the effects of SLR. Numerous coastal parcels are predicted to be affected due to hurricane damage up to the year 2080.

Data Limitations and Benefits

Limitations

- 1. Lidar data was only available for 3 counties; Duval, Escambia, and Dade. Flyover only included the coastal areas.
- 2. Lidar data did not include "Bare Earth" estimation, i.e., structures avere removed.
- 3. Lidar data has a 0.5 foot accuracy, so if we use the 34 cm estimate, it's similar to the range of error.
- 4. Northern Duval County has no private parcels, and Southern Duval County has parcels but the coast is controlled by an Erosion Control Line (ECL)
- 5. Approximately 90% of Escambia County is publicly owned coast. Most of the private parcels are behind the ECL.

Benefits

- 1. Parcel ID (property value) database has distinct variables for land value and for structure value.
- 2. Parcel ID data was available for all six counties.

Dade County

Parcels are close to mean high water (MHW)

Storm surge in a Category 4 (20.132ft) hurricane would likely hit structures and inundate those adjacent properties by the year 2080.

Duval County

Properties located behind the possible line of the Hurricane Category 4 (HC4) contour will likely experience reduced damage costs in 2080.

Escambia County (West Side)

• Land parcels susceptible to SLR and highly likely that properties will be inundated by a HC4

Escambia County (East Side)

Properties do not immediately face inundation; however, there is a risk that the lower areas (pink contours) could flood if surge crosses the summit of the frontier of the property

Adaptation Measures in Florida

- Retreat : no effect to protect the land from the sea
- Accommodation: continue to use land at risk
- Protection: involves hard structure such as sea walls and dikes
- Nourishment: consists of the placement of good quality sediment along the water's edge to advance the shoreline seaward.

Comparisons of Alternative Measures

	Retreat	Accommodation	Protection	Beach Nourishment
Pros:	•The most appropriate option in areas of high erosion and in the presence of small economic revenue base	Provides the opportunities for inundated land to be used for new purposes	Effective Defense	Reduces Water Possible Slowly
Cons:	Can be costly	Requires hefty insurance premiums Frequent maintenance Property is at risk	 Erosion Costly Solution Visually Unattractive 	 Necessary to regularly nourish a beach Dredging may cause short-term direct mortality to sessile organisms, modifies seafloor habitats and sedimentary character

Cost Damage Assessment Model

Regression Model

Elevation_Return Years

Y= a + b Log X Y=surge (ft), X=year

Damage Cost²_Storm Surge³ Y= c + d M ⁴ Y=surge (ft) , M=damage cost (\$ in 2006)

Damage cost and return years of the storm event associated with storm surge are simulated by linear interpolation and regression. This approach was developed by CEFA, FSU to project damage cost and return year period.

Flood Insurance Study, FEMA, 2000
 Hurricane Summary Data, Florida Office of Insurance Regulation, 2006; 2006 Dollars
 Tropical Cyclone Report 2005
 Regression with 95% confidence

Cost Damage Assessment

There are Two Approaches¹ to Measure the Damage Associated with SLR

Increase of the Damage Cost
Reduction of Hurricane Return Years

In Dade County, the return year for a Category 2 hurricane with a storm surge of 8 feet will be reduced from 412 years to 12 years for a 65 cm SLR scenario. The associated damage cost will increase from \$2.4 Billion to \$3.3 billion.²

1 CEFA, Florida State University 2 Linear Regression with 95% confidence

Flood Insurance study, FEMA, 2000

2 Flood Insurance study, FEMA, 2000

Dade County Elevation (ft)

2 Flood Insurance study, FEMA, 2000

1Hurricane summary data, Florida Office of Insurance Regulation, 2006 2 Flood Insurance study, FEMA, 2000 **Duval County** Elevation (ft)

1Hurricane summary data, Florida Office of Insurance Regulation, 2006 2 Flood Insurance study, FEMA, 2000

Escambia County Elevation (ft)

5

2

Q Dennis (\$95, 14.132 ft)

C2: 10.132 Ft 65CM SLR

C2: 9.1152 Ft 34CM \$LR

 120
 80
 40
 20
 10

 Damage Cost¹ (Million)
 0

Return Period² (Years)

1000

100

1 Hurricane summary data, Florida Office of Insurance Regulation, 2006 2 Flood Insurance study, FEMA, 2000

Event Totals by County of Loss Occurrence - CY 2004 in 2006 Dollars

	Charley	Frances	Iyan	ean
Dade	\$3,008,721	\$70,468,075	\$2,865,950	\$16,170,268
Dixie	\$36,408	\$4,945,128	\$63,237	\$971,682
Duyal	\$5,906,950	\$72,322,498	\$1,649,646	\$22,404,237
Escambia	\$1,001,182	\$12,980,961	\$2,010,001,983	\$19,105,056
Monroe	\$663,804	\$4,945,128	\$363,295	\$133,665
Wakulla	\$14,047	\$1,854,422	\$214,588	\$193,451

Resource: Hurricane summary data, Florida Office of Insurance Regulation, 2006

Event Totals by County of Loss Occurrence- CY 2005 in 2006 Dollars

	Dennis	Katrina	Rita	Wilma
Dade	\$5,976,177	\$585,157,998	\$4,396,620	\$2,152,438
Dixie	\$59,559	\$1,742	\$661	\$33,104
Duyal	\$361,426	\$831,764	\$151,072	\$1,055,752
Escambia	\$70,706,486	\$11,341,048	\$150,867	\$283,996
Monroe	\$4,400,998	\$27,907,960	\$11,329,370	\$215,335,831
Wakulla	\$4,418,483	\$588,457	\$1,274	\$28,279

Resource: Hurricane Summary Data, Florida Office of Insurance Regulation, 2006